
















the main function of CRABP-2 is to facilitate RA signalling by
transporting RA to the nucleus, these prior observations of
decreased CRABP-2 expression would also result in reduced RA
signalling,23 supporting our hypothesis that RA pathway dysre-
gulation contributes to emphysema.

The hypothesis that increased capacity for RA catabolism con-
tributes to emphysema suggests a pharmacokinetic explanation
for the negative results of prior studies of exogenous RA in
patients with COPD.52 53 Synthetic retinoids that are not sus-
ceptible to CYP26A1-mediated degradation thus may be more
useful in this group of patients. Our finding that an RAR-α
agonist partially reproduced ATRA-induced HLMVEC angio-
genesis in vitro, together with prior reports that RAR-α agonists
can induce lung regeneration in mice,16 suggests RAR-α may be
a novel therapeutic target for patients with alveolar
insufficiency.

Our study has limitations. Pharmacological agonists are not
completely selective, the in vitro antagonism of RAR-α and
RAR-γ by BMS453 being an example.26 To define further a role
for specific RARs in HLMVEC angiogenesis, molecular disrup-
tion of RAR-α, RAR-β or RAR-γ, such as with siRNA-mediated
knockdown or overexpression of dominant negative mutants,
would be required. Similarly, to delineate a role for VEGF sig-
nalling, it would be necessary to demonstrate VEGFA or
VEGFR2 protein induction by ATRA, and test if VEGF pathway
inhibitors (such as the VEGFR2 inhibitor SU1498), or molecu-
lar disruption of VEGF pathway components, could interfere
with ATRA-induced HLMVEC angiogenesis. Unbiased tran-
scriptional profiling of HLMVEC following ATRA treatment
may help reveal other downstream signalling pathways involved.
Elucidating the mechanisms of ATRA-induced endothelial repair
would help towards developing specific therapies that avoid off-
target effects of modulating RA signalling, which has pleiotropic
functions.

The scratch and Matrigel-based angiogenesis assays, although
established and widely used models of cellular repair,32 33

cannot fully recapitulate the complex molecular events that

occur during lung regeneration in vivo. As animal models often
inadequately represent human physiology, complex human
models of lung repair are needed. Recent progress with human
organoid and lung-on-a-chip technology may offer exciting
avenues for further testing the hypotheses outlined in our
study.54 55 A multicellular assay such as co-culture of HLMVEC
with lung fibroblasts may help to determine whether fibroblast-
derived ATRA can induce HLMVEC angiogenesis, and further
addition of hAT2 could test a role for indirect effects of RA on
hAT2 repair via other cell types. Precision-cut lung slices are a
promising alternative for defining the complex regulation of RA
signalling between distinct alveolar cell types.56 Using immuno-
fluorescence, we localised CYP26A1 and RALDH-1 to distinct
alveolar populations, microvascular endothelium and fibroblasts
respectively, suggesting a paracrine mechanism of RA signalling
in human distal lung. This is strengthened by the lack of
RALDH-1 expression in endothelium. However, we cannot
exclude that endothelial cells express other RALDH subtypes
(RALDH-2 or RALDH-3). Analysis of CYP26A1 levels in lung
microvasculature of patients with emphysema would help to
clarify whether endothelial RA catabolic capacity is specifically
increased in emphysema. Additional studies of whether
HLMVEC from patients with emphysema have altered capacity
to respond to exogenous ATRA would provide a further test of
our hypothesis.

In summary, we propose that RA is a key repair factor in the
human alveolus (summarised in figure 8). Activation of RA sig-
nalling in microvascular endothelium by either endogenous RA
or an exogenous retinoid stimulates angiogenesis, promoting
alveolar regeneration (figure 8A). Conversely, degradation of
endogenous RA by increased CYP26A1 impairs endothelial cell
repair and may contribute to chronic lung disease (figure 8B).
Together, these data contribute to our understanding of how a
single essential fat-soluble nutrient, vitamin A, can directly
modulate human lung responses in health and disease with
potentially important clinical implications. The global variation
in the prevalence of COPD is not fully explained by age,

Figure 6 CYP26A1 expression in control and emphysematous lung. (A) CYP26A1 mRNA expression in control (n=10) and emphysematous (n=9)
lung. Tissue was processed for RNA extraction, and Taqman-based quantitative real-time PCR performed for CYP26A1 with expression normalised to
the mean of GUSB and B2M. Results expressed relative to mean of control group. *p=0.017 Mann-Whitney test. (B) CYP26A1 protein was
determined in whole lung tissue lysates from a separate cohort of patients (5 emphysematous, 5 control) using Western blot with anti-CYP26A1
antibody, with β-actin as loading control. Graph shows quantification of CYP26A1 band intensity, normalised to β-actin. Results expressed relative
to mean of control group. *p=0.016, Mann-Whitney test. Data expressed as box and whisker plots with horizontal line representing the median,
and upper and lower bounds of box representing IQR. GUSB, β glucuronidase; B2M, β-2 microglobulin; CYP26A1, cytochrome P450 family 26
subfamily A polypeptide 1.
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Figure 7 Correlations between CYP26A1, cellular retinoic acid binding protein 1, and cellular retinol binding protein 2 expression and transfer
factor (KCOc % predicted) in COPD. Post-hoc statistical correlation of (A) CYP26A1, B) CRABP1 and C) CRBP2 mRNA expression normalised to mean
of GUSB and B2M, with transfer coefficient for CO uptake (KCOc % predicted). For (A and B), Y-axes are log 10 scale for ease of display.
Spearman’s correlation, r=Spearman’s coefficient. n=19, white circles=emphysema, filled circles=control. Abbreviations: GUSB, β-glucuronidase;
B2M, β-2 microglobulin; CYP26A1, cytochrome P450 family 26 subfamily A polypeptide 1; CRABP1, cellular retinoic acid binding protein 1; CRBP2,
cellular retinol binding protein 2.

Figure 8 Proposed model of role of RA signalling in emphysema and adult human lung regeneration. In this model, increased RA degradation, for
example, through the CRABP-1–CYP26A1 axis, or decreased CRBP-2, contributes to decreased RA levels and a consequent deficiency in
RA-mediated endothelial repair, which has a role in the pathogenesis of emphysema. In conditions of RA sufficiency or after exogenous RA
administration, RA can stimulate microvascular angiogenesis, for example, through RAR-α activation, mediated by downstream pro-angiogenic
signalling such as the VEGF pathway, thus promoting alveolar regeneration. CRABP-1, cellular retinoic acid binding protein 1; CRBP-2, cytoplasmic
retinol binding protein 2; CYP26A1, cytochrome P450 subfamily 26 A1; RAR, retinoic acid receptor; VEGFA, vascular endothelial growth factor A;
VEGFR2, vascular endothelial growth factor receptor 2.
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cigarette smoking and biomass smoke exposure, and other
factors are therefore likely to be important.57 Vitamin A defi-
ciency and subclinical deficiency are associated with poverty and
are prevalent in the developing world. We suggest targeted inter-
vention studies examining lung health in these populations
might be informative.
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regeneration in emphysema
contribute to failure of adult human lung 
Deficient retinoid-driven angiogenesis may
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