Lymph nodes are small, bean-shaped structures that play a crucial role in the immune system by filtering lymphatic fluid and trapping foreign particles, such as bacteria and viruses. They contain immune cells, such as lymphocytes and macrophages, which help to identify and destroy harmful pathogens. Tissue sections are needed to study lymph nodes as they provide a thin and flat sample that can be easily sliced and observed under a microscope. This allows researchers to investigate the cellular and molecular mechanisms underlying various immune functions, such as antigen presentation, T cell activation, and antibody production, and to identify changes that occur in lymphatic disorders, such as lymphoma and lymphedema.
Not sure which model is right for your needs?
Dr Astero Klampatsa (PhD) is a Team Leader in Cancer Immunotherapy at the Institute of Cancer Research, London, UK and a Senior Lecturer in King’s College London, UK. She focuses on developing novel CAR T cell therapies for mesothelioma and lung cancer, as well as the immunobiology of these malignancies for identification of markers of response to immunotherapy. In this webinar, Dr. Klampatsa will discuss how the Compresstome® was used to create precision-cut tumor slices (PCTS) as an ex vivo model for immunotherapy research.
Fresh tissue can vary wildly in its level of difficulty to cut, due to a variety of factors like tissue type, and maturity of the animal (myelination). Often with other vibrating microtomes, they struggle to handle highly myelinated tissue or very soft neonatal tissue. The compression effect, along with multiple points of adjustment (speed, oscillation, and agarose concentration) enables our instrument to better handle “difficult” to cut tissue. The Compresstome® isn’t just able to cut thinner than the competition, we believe that the evidence shows that we also provide higher quality cuts that preserve cell surface structures and help increase the number of healthy to dead cells. Researchers at University of Minnesota use a Compresstome® to section live tissue in their procedure to locate, quantify, and phenotype antigen-specific CD8 T cells.
Dr. Tsilingiri is working on tumor immunotherapy and using the Compresstome vibrating microtome to examine the interaction between tumor tissues and autologous lymph node cells in slice cultures. This work is being carried out in the frame of an EU-funded Consortium, Tumour-LNoC (Tumour-Lymph node on a chip), with the ultimate goal of mimicking the metastatic process on a chip and monitor metastasizing cells in real time.
Hu KH, Eichorst JP, McGinnis CS, Patterson DM, Chow ED, Kersten K, Jameson SC, Gartner ZJ, Rao AA, Krummel MF. ZipSeq: barcoding for real-time mapping of single cell transcriptomes. Nat Methods. 2020 Aug;17(8):833-843. Epub 2020 Jul 6. PMID: 32632238; PMCID: PMC7891292. Download PDF
Li S, Folkvord JM, Kovacs KJ, Wagstaff RK, Mwakalundwa G, Rendahl AK, Rakasz EG, Connick E, Skinner PJ. Low levels of SIV-specific CD8+ T cells in germinal centers characterizes acute SIV infection. PLoS Pathog. 2019 Mar 21;15(3):e1007311. PMID: 30897187; PMCID: PMC6445460. Download PDF
Webb GM, Li S, Mwakalundwa G, Folkvord JM, Greene JM, Reed JS, Stanton JJ, Legasse AW, Hobbs T, Martin LD, Park BS, Whitney JB, Jeng EK, Wong HC, Nixon DF, Jones RB, Connick E, Skinner PJ, Sacha JB. The human IL-15 superagonist ALT-803 directs SIV-specific CD8<sup>+</sup> T cells into B-cell follicles. Blood Adv. 2018 Jan 23;2(2):76-84. PMID: 29365313; PMCID: PMC5787870. Download PDF
You’ll hear back from us in one business day
© 2023 Copyright
*Academic discounts are only valid for customers in North America.
© 2023 copyright