Immunohistochemistry is a technique that uses antibodies to detect specific proteins or molecules in tissues under a microscope. It is an important tool in both research and clinical settings, allowing scientists and pathologists to identify specific cells and tissues and investigate disease mechanisms. Tissue sections are required for immunohistochemistry as they provide a thin and flat sample that can be easily stained with the antibodies. Without tissue sections, it would be difficult to distinguish between different cells and tissues in a complex sample, making it challenging to study specific biological processes and identify disease-related biomarkers.
The quality of your experiments will depend on the quality of your tissue slices. The Compresstome® vibrating microtome has been scientifically demonstrated to create more consistent and reliable thin tissue sections for immunohistochemistry compared to other vibratomes. How does the Compresstome® do this? Our vibrating microtome produces tissue slices of consistent thicknesses without chattermarks by:
Here, you can see the significant reduction in chattermarks in tissues slices produced with our Compresstome® tissue slicer versus sections (A, C). Slices made at the same cutting speed and oscillation on another market vibratome produces chattermarks on the surface of tissue slices.
Not sure which model is right for your needs?
Have you wondered how one mouse brain may be used for multiple experiments? Come discover the strategy behind using animal tissues for multi-use research experiments, so that your tissue samples can go further. Dr. Yiying Zhang from Harvard Medical School and Massachusetts General Hospital is our guest webinar speaker. For this Precisionary webinar, Dr. Zhang will discuss a “3D” use of animal tissues in planning experimental designs in academic research.
Dr Astero Klampatsa (PhD) is a Team Leader in Cancer Immunotherapy at the Institute of Cancer Research, London, UK and a Senior Lecturer in King’s College London, UK. She focuses on developing novel CAR T cell therapies for mesothelioma and lung cancer, as well as the immunobiology of these malignancies for identification of markers of response to immunotherapy. In this webinar, Dr. Klampatsa will discuss how the Compresstome® was used to create precision-cut tumor slices (PCTS) as an ex vivo model for immunotherapy research.
Visikol is a contract research services company focused on leveraging advanced imaging, 3D cell culture assays and digital pathology to accelerate the drug discovery and development process. In this webinar, Visikol explains the need for in vitro liver models to study livery injury. They demonstrate the standard assay format for creating precision-cut liver slices (PCLS), and explain how the Compresstome® VF-310-0Z vibrating microtome helps create uniform tissue slices that can be meaningfully compared between treatments. Visikol goes through how to use the Compresstome® step-by-step for making PCLS.
Explore how scientists use the Compresstome® vibrating microtome to create tissue slices that combine lipophilic dye tracing, whole mount in situ hybridization, immunohistochemistry, and histology to extract the maximal possible amount of data.
Fresh tissue can vary wildly in its level of difficulty to cut, due to a variety of factors like tissue type, and maturity of the animal (myelination). Often with other vibrating microtomes, they struggle to handle highly myelinated tissue or very soft neonatal tissue. The compression effect, along with multiple points of adjustment (speed, oscillation, and agarose concentration) enables our instrument to better handle “difficult” to cut tissue. The Compresstome® isn’t just able to cut thinner than the competition, we believe that the evidence shows that we also provide higher quality cuts that preserve cell surface structures and help increase the number of healthy to dead cells. Researchers at University of Minnesota use a Compresstome® to section live tissue in their procedure to locate, quantify, and phenotype antigen-specific CD8 T cells.
Dr. Tsilingiri is working on tumor immunotherapy and using the Compresstome vibrating microtome to examine the interaction between tumor tissues and autologous lymph node cells in slice cultures. This work is being carried out in the frame of an EU-funded Consortium, Tumour-LNoC (Tumour-Lymph node on a chip), with the ultimate goal of mimicking the metastatic process on a chip and monitor metastasizing cells in real time.
Chen X, Wolfe DA, Bindu DS, Zhang M, Taskin N, Goertsen D, Shay TF, Sullivan EE, Huang SF, Ravindra Kumar S, Arokiaraj CM, Plattner VM, Campos LJ, Mich JK, Monet D, Ngo V, Ding X, Omstead V, Weed N, Bishaw Y, Gore BB, Lein ES, Akrami A, Miller C, Levi BP, Keller A, Ting JT, Fox AS, Eroglu C, Gradinaru V. Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates. Nat Commun. 2023 Jun 8;14(1):3345. PMID: 37291094; PMCID: PMC10250345. Download PDF
Mastorakos P, Mihelson N, Luby M, Burks SR, Johnson K, Hsia AW, Witko J, Frank JA, Latour L, McGavern DB. Temporally distinct myeloid cell responses mediate damage and repair after cerebrovascular injury. Nat Neurosci. 2021 Feb;24(2):245-258. Epub 2021 Jan 18. PMID: 33462481; PMCID: PMC7854523. Download PDF
Rindner DJ, Proddutur A, Lur G. Cell-type-specific integration of feedforward and feedback synaptic inputs in the posterior parietal cortex. Neuron. 2022 Nov 16;110(22):3760-3773.e5. Epub 2022 Sep 9. PMID: 36087582; PMCID: PMC9671855. Download PDF
You’ll hear back from us in one business day
© 2023 Copyright
*Academic discounts are only valid for customers in North America.
© 2023 copyright