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Figure 7. Effects of light pulse duration on ChR2-expressing neurons in vivo. Increasing light pulse duration onto 
(A) a presumptive regular-spiking SST cortical interneuron (median latency to spike = 1.8 ms, N = 7 cells from 5 animals) 
leads to depolarization block and (B) disinhibition of a presumptive cortical pyramidal cell. Increasing light pulse 
Figure 7. Continued on next page
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pulse durations were not as effective at eliciting robust neuronal firing as longer pulses, consistent with 
what we observed previously (Figure 6E). However, cortical pyramidal cells (Figure 7E) showed lower 
firing rates than mitral cells, consistent with ex vivo recordings (Figure 6B), suggesting that pyramidal 
neurons exhibit some sensitivity to depolarization block at durations longer than 40 ms, but perhaps 
not as susceptible as previously noted interneurons.

Discussion
The use of ChR2 in animal studies is fast becoming a mainstay method to drive neuronal excitability in 
vivo (Li et al., 2005; Nagel et al., 2005; Arenkiel et al., 2007; Wang et al., 2007). Here, we show that 
targeted expression of ChR2 in specified cell populations of the mammalian brain can lead to depolariza-
tion block as a result of prolonged light-induced hyperexcitability. In particular, we demonstrate that 
the duration of light pulse stimulation used to activate ChR2-expressing neurons is critical to induce 
consistent and reliable firing of action potentials. Using several mouse lines to drive ChR2 expression 
in a neuronal subtype-specific manner, we show prominent ex vivo and in vivo silencing of regular-
spiking interneuron cell types. In addition, we show that excitatory cell types and fast-spiking interneu-
rons are more resistant to prolonged light-induced depolarization block.

Given its nature as a cation-permeable membrane channel, ChR2-mediated depolarization block is 
likely due to excessive cation influx into a targeted neuron, resulting in prolonged membrane depolari-
zation. If depolarization block were known to occur in a uniform fashion across interneuron subpopula-
tions, the use of a narrow range of stimulation parameters could reliably avoid spike failures. Currently, 
however, pulse duration parameters vary widely in the growing number of optogenetic studies, and 
the use of prolonged light pulses has been employed in optogenetic applications used to drive neuronal 
dynamics in vivo (Daou et al., 2013; Liske et al., 2013; Tabuchi et al., 2013). Though many optogenetic 
studies to date have employed short-width pulse parameters for in vivo manipulations, this concern is 
not inconsequential and should be considered when designing studies that employ ChR2. The physio-
logical relevance of depolarization block is supported by data that show depolarization block can be 
achieved under normal physiological synaptic function in vivo (Bianchi et al., 2012), yet light-induced 
stimulation of a population of ChR2-expressing neurons is likely to far exceed synaptic activity produced 
under normal physiological states. Furthermore, and consistent with our data from SST-expressing 
interneurons, specific populations of seemingly homogeneous neurons in the same brain region may 
exhibit dramatically different electrophysiological properties, such that some percentage of those 
neurons exhibit a greater tendency to enter into depolarization block more readily than others (Unal 
et al., 2012). Furthermore, specific biophysical properties of neurons, such as the distribution and 
number of voltage-gated sodium channels, will influence how susceptible a given class of neurons is 
to depolarization block to excessive photostimulation (Tucker et al., 2012). Similarly, heterogeneity 
of transgene expression across different driver lines presents another dimension in which cells that 
express ChR2 may be variably susceptible to block. Likewise, viral-mediated expression of ChR2 with 
the use of variable-strength promoters is often a more potent method to strongly express ChR2 in cells 
of interest compared to transgenic models, but this too will lead to further variability. To reduce variability  
in photo-induced firing responses, it is important to empirically define for each neuronal subset the 
stimulation parameters that reliably and reversibly activate neurons of interest, before adopting 
stimulation parameters for in vivo testing.

In vivo optogenetic studies in awake, behaving animals commonly use light stimulation to elicit and 
measure behavioral or complex physiological changes rather than a change in membrane potential or 
firing rate of the manipulated neuron (Adamantidis et al., 2007; Aponte et al., 2011; Liu et al., 2012; 
Shabel et al., 2012; Tan et al., 2012; van Zessen et al., 2012). The facile use of this technology in these 
contexts lends itself to confound when the appropriate light stimulation parameters are not employed. 
This stands in contrast to in vivo optophysiology in anesthetized animals, or ex vivo recordings in tissue 

duration onto (C) a presumptive fast-spiking SST cortical interneuron (median latency to spike = 6 ms, N = 3 cells 
from 5 animals) results in enhanced interneuron firing and (D) subsequent inhibition of a presumptive cortical 
pyramidal cell. In contrast to regular-spiking interneurons, increasing light pulse duration onto excitatory (E) mitral 
cells and cortical pyramidal cells enhance average firing rate with increasing pulse width. OB = Olfactory Bulb.
DOI: 10.7554/eLife.01481.009
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slices where firing properties of the cells of interest are directly recorded in response to light exposure. 
However, when even these experimental preparations are used to study the responses of postsynaptic 
partners of stimulated neurons, the same concerns apply. In either case, interpretation of the output 
measure is susceptible to corruption when the cause of changes observed can be attributed to the 
block of activity in the neuron of interest rather than its excitation. Therefore, it is important to opti-
mize stimulation conditions for targeted activation of a population of neurons. For experiments that 
require prolonged neuronal activation, the use of step-function opsins (Berndt et al., 2009; Diester 
and et al, 2011) might be warranted.

Interestingly, these concerns might also be used advantageously. Consistent with our data, it may 
be possible to design strategies using ChR2-mediated optical stimulation for the explicit study of  
depolarization block in which it is thought to subserve a number of neurophysiological processes. 
Recent studies have highlighted a role for depolarization block in complex neuronal activity (Marder 
et al., 1996; Grace et al., 1997; McIntyre et al., 2004; Ullah and Schiff, 2010; Bianchi et al., 2012). 
For example, states of depolarization block may be a significant factor for information processing in 
certain classes of neurons (Marder et al., 1996; Dovzhenok and Kuznetsov, 2012). Interestingly, a 
long-standing hypothesis regarding the therapeutic action of antipsychotic drugs commonly used in 
the treatment of schizophrenia features depolarization block in subsets of dopamine neurons after 
long-term drug treatment (Grace et al., 1997; Boye and Rompre, 2000; Valenti et al., 2011). 
Similarly, depolarization block has been proposed as a mechanism to explain the therapeutic benefit 
of deep brain stimulation (McIntyre et al., 2004), a method used in the treatment of a variety of move-
ment disorders such as Parkinson’s disease. Moreover, persistent sodium currents and consequent 
depolarization block are thought to facilitate the generation of electrographic seizures (Bikson et al., 
2003; Ziburkus et al., 2006; Ullah and Schiff, 2010). With a precise model to control neuronal excit-
ability, or to purposefully induce depolarization block, these phenomena may be topics for future 
investigation.

Optogenetics affords the ability to mark, map, and manipulate brain cells and circuits with previously 
unimaginable power and precision. Although the technology to probe brain circuits is rapidly evolving 
at a breakneck pace, a detailed understanding of the cells being targeted for optogenetic studies 
remains limited. Our data highlight the need to empirically determine the optimal photostimulation 
parameters best suited for the cell types being investigated, since as a field we are still learning the 
possibilities and limitations of optogenetic manipulations.

Materials and methods
Experimental mouse lines
Animals were treated in compliance with the US Department of Health and Human Services and Baylor 
College of Medicine IUCAC guidelines. Chat-ChR2 (Zhao et al., 2011) and Thy1-ChR2 mice (Arenkiel 
et al., 2007; Wang et al., 2007) have been previously described. Crh-Cre+/− (Crhtm1(cre)Zjh) (Taniguchi et al., 
2011) and floxed conditional ROSA26 ChR2-EYFP female mice (Gt(ROSA)26Sortm32.1(CAG-COP4*H134R/EYFP)Hze/J) 
were obtained from Jackson Laboratories. Crh-Cre+/−; ROSA26LSL-ChR2-EYFP mice were generated by crossing 
Crh-Cre+/− male mice with homozygous floxed conditional ROSA26LSL-ChR2-EYFP female mice. Sst-Cre+/−; 
ROSA26LSL-ChR2-EYFP mice were generated by crossing male Sst-Cre+/− (Ssttm2.1(cre)Zjh/J) mice with conditional 
ROSA26LSL-ChR2-EYFP female mice. Sst-Cre+/−; ROSA26LSL-tdTomato animals were generated by crossing male 
Sst-Cre+/− mice with conditional ROSA26LSL-tdTomato (B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J) female mice.

Microscopy
Animals were deeply anesthetized using isoflurane and were transcardially perfused with PBS followed 
by 4% paraformaldehyde (PFA). Brains were dissected and postfixed in 4% PFA for 1 hr at room 
temperature or overnight at 4°C. Brains were coronally sectioned at 50 μm (olfactory bulb) or 100 μm 
(forebrain) using a Compresstome (Precisionary Instruments, San Jose, CA). Slices were mounted with 
Vectashield mounting medium (Vector Laboratories, Burlingame, CA) and detection of EYFP or 
tdTomato expression was performed using a Leica M205-FA for low-magnification images, and a Leica 
TCS SPE confocal microscope under a 20X objective for higher magnification images.

Acute brain slice preparation and electrophysiology
Coronal brain slices (300 μm) were prepared from 3- to 6-week-old animals for all genotypes tested. 
The slices were embedded in low melting point agarose and sectioned into ice-cold oxygenated (5% 
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CO2, 95% O2) dissection buffer (in mM: 87 NaCl, 2.5 KCl, 1.6 NaH2PO4, 25 NaHCO3, 75 sucrose, 10 
glucose, 1.3 ascorbic acid, 0.5 CaCl2, 7 MgCl2), recovered for 15 min at 37°C in oxygenated artificial 
cerebrospinal fluid (ACSF) (in mM: 122 NaCl, 3 KCl, 1.2 NaH2PO4, 26 NaHCO3, 20 glucose, 2 CaCl2, 
1 MgCl2, 305-310 mOsm, pH 7.3), and acclimated at room temperature for 10 min before performing 
electrophysiological recordings. Borosilicate glass electrodes (Sutter Instruments, Novato, CA) were 
used for whole cell patch clamp recordings. Electrodes were pulled with tip resistance between 
3–8 MΩ, and filled with internal solution (in mM, 120 K-gluconate, 5 KCl, 2 MgCl2, 0.05 EGTA, 10 
HEPES, 2 Mg-ATP, 0.4 Mg-GTP, 10 creatine phosphate, 290–300 mOsm, pH 7.3). During recordings, 
coronal brain slices were placed in a room temperature chamber mounted on an Olympus upright 
microscope (BX50WI) and perfused with oxygenated ACSF. Cells were visualized under differential 
interference contrast imaging. Data were obtained via a Multiclamp 700B amplifier, low-pass 
Bessel-filtered at 4 kHz, and digitized on computer disk (Clampex, Axon Instruments). Excitation 
light was from a BLM-Series 473 nm blue laser system (Spectra Services, Ontario, NY), which was 
controlled by digital commands from Clampex to trigger photostimulation. The firing rate for each 
cell recorded for each stimulation parameter was counted manually for the full stimulus train and then 
averaged and plotted using GraphPad Prism statistical software (GraphPad Software Inc, La Jolla, CA.). 
Light-evoked spike amplitudes were measured for the duration of the full stimulus train. Amplitudes 
were normalized to the initial light-evoked action potential for each respective trace, and temporally 
corresponding amplitudes were averaged for each cell type for a given pulse duration parameter. 
Spike probabilities were calculated by counting successful light-evoked spikes for each trace of  
a corresponding stimulus parameter and averaging success rates across cells for each cell type 
tested. Minimal pulse widths were determined by photostimulating neurons starting with short 
(sub-millisecond) to high (1 ms) pulse widths. Criteria for consideration of minimal pulse width was that 
a given pulse width was capable of eliciting ≥70% fidelity (i.e., a minimum of seven light-evoked 
action potentials out of 10 pulses). Minimal pulse widths were then averaged across cells for each 
cell type tested.

In vivo photostimulation and electrophysiology
For in vivo recordings, animals were injected IP with ketamine (150 μg/g body weight), followed by 
sustained delivery of 0.3% isoflurane with oxygen to the animal. For olfactory bulb recordings, the 
dorsal surface of the olfactory bulb was carefully exposed so as to not damage the pia or underlying 
brain tissue. For extracellular recordings from the cortex, a small area of the skull overlying the cortical 
region of interest was removed to expose the underlying brain tissue. For light stimulation and electro-
physiological recordings, optrodes made from fiber optics and 1.0 MΩ extracellular tungsten recording 
electrodes (Microprobe Inc., Gaithersburg, MD) were used. A blue laser source (CrystaLaser, Reno, NV) 
was controlled by a Master-8 (AMPI, Israel), and guided to either the olfactory bulb or cortex by 
focusing light onto fused silica fiber optics. Extracellular recordings were amplified by a Model 1800 AC 
amplifier (A-M systems, Carlsborg, WA), digitized using a CED Power 1401 mk II (Cambridge Electronic 
Design, Cambridge, England), and processed using Spike2 acquisition software (Cambridge Electronic 
Design, Cambridge, England). For in vivo recordings, ChR2 expression was suggested by short latency 
to spike. Median latencies were calculated using MATLAB software. In addition to latencies, mitral cell 
identity can be determined by characteristic firing that is coupled to respiration. Thus, ChR2 expression 
can be indirectly determined by monitoring changes in respiratory-coupled firing responses when a 
ChR2-expressing cell is activated by light.
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